Caledonian Belden Juivalent Cables

Multicore Over Margened Cables

Multicore Overall Screened Cables-Belden Equivalent 9535

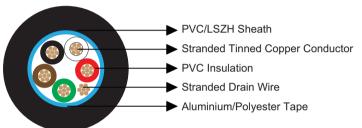
» Application

These multicore overall screened cables have individually insulated cores laid up in an aluminum/polyester tape with a tinned copper drain wire. These cables are suitable for RS232 applications, used as audio, control and instrumentation cables.

» Construction

» Conductor: Tinned copper wire.

» Insulation: PVC.


» Overall Screen: Aluminium/Polyester

tape.

» Drain Wire: Stranded tinned copper, 7x0.20.

» Sheath: PVC (V type)/LSZH (H type).

» Insulation Colour: Black, White, Red, Green, Brown.

» Electrical & Mechanical Characteristics

AWG		24	
Conductor Construction		7x0.20	
UL Style		2464	
Maximum Conductor Resistance	Ω/km	85	
Voltage Rating	V	300	
Nominal Capacitance Conductor to Conductor	pF/m	108	
Nominal Capacitance Conductor to Screen	pF/m	213	
Bending Radius		10xOverall Diameter	
Operating Temperature	°C	-30~80	

» Dimensions

Ordering Code	No. of Cores	Insulation Thickness	Sheath Thickness	Overall Diameter
		mm	mm	mm
BE119535V	5	0.25	0.81	4.8
BE119535H	5	0.25	0.81	4.8